| Physics 08-03 | Electric | Field and | Electric | Field Lines |
|---------------|----------|-----------|----------|-------------|
|               |          |           |          |             |

Name: \_\_\_\_\_

## Electric Field

We can use a \_\_\_\_\_ charge to determine how the surrounding \_\_\_\_\_ generate a \_\_\_\_\_

o Pick a small test charge so it doesn't \_\_\_\_\_ the surrounding charge \_\_\_\_\_

A test charge ( $q_0 = 1.0 \times 10^{-10}$  C) experiences a force of  $2 \times 10^{-9}$  N when placed near a charged sphere. Determine the Force per Coulomb that the charge experiences and predict the force on a 2 C charge.

## **Electric Field Definition**

$$E = \frac{F}{q_0} = \frac{kq}{r^2}$$

• \_\_\_\_\_ per \_\_\_\_

Vector

o Same \_\_\_\_\_\_ as the force on a \_\_\_\_\_\_ test charge

• Unit: N/C

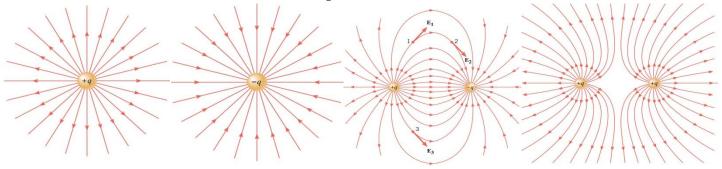
There is a point charge of  $q=2\times 10^{-8}$  C. Determine the E-field at 0.50 m away using a test charge of  $1\times 10^{-10}$  C.

There are two point charges of  $q_1 = 4$  C and  $q_2 = 8$  C and they are 10 m apart. Find point where E = 0 between them.

## Electric Field Lines

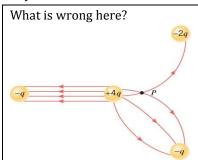
Map to show the \_\_\_\_\_ in \_\_\_\_

• Rules


o Lines begin at \_\_\_\_\_ charges only

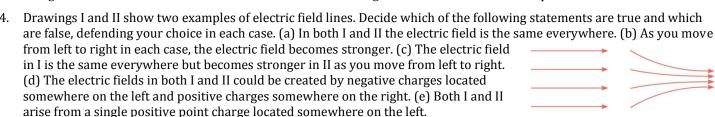
o Lines end at \_\_\_\_\_ charges only

The number of lines entering or leaving a charge is \_\_\_\_\_\_ to the \_\_\_\_\_ of charge

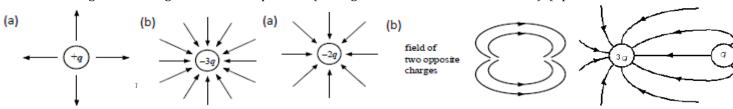

o Lines don't \_\_\_\_\_ each other

Lines leave surfaces at \_\_\_\_\_degrees




Ш

II




## **Homework**

- 1. Why must the test charge q<sub>0</sub> in the definition of the electric field be vanishingly small?
- 2. The figure shows an electric field extending over three regions, labeled I, II, and III. Answer the following questions. (a) Are there any isolated charges? If so, in what region and what are their signs? (b) Where is the field strongest? (c) Where is it weakest? (d) Where is the field the most uniform?
- 3. There is an electric field at point P. A very small charge is placed at this point and experiences a force. Another very small charge is then placed at this point and experiences a force that differs in both magnitude and direction from that experienced by the first charge. How can these two different forces result from the single electric field that exists at point P?



- 5. What is the magnitude and direction of an electric field that exerts a  $2.00 \times 10^{-5}$  N upward force on a  $-1.75 \mu$ C charge? (OpenStax 18.27) **-11.4 N/C downward**
- 6. What is the magnitude and direction of the force exerted on a 3.50  $\mu$ C charge by a 250 N/C electric field that points due east? (OpenStax 18.28) **8.75**  $\times$  **10**<sup>-4</sup> N
- 7. Calculate the magnitude of the electric field 2.00 m from a point charge of 5.00 mC (such as found on the terminal of a Van de Graaff). (OpenStax 18.29)  $1.13 \times 10^7$  N/C
- 8. (a) What magnitude point charge creates a 10,000 N/C electric field at a distance of 0.250 m? (b) How large is the field at 10.0 m? (OpenStax 18.30)  $6.94 \times 10^{-8}$  C, 6.25 N/C
- 9. (a) Find the direction and magnitude of an electric field that exerts a  $4.80\times10^{-17}$  N westward force on an electron. (b) What magnitude and direction force does this field exert on a proton? (OpenStax 18.32) **300 N/C east, 4.80 \times 10<sup>-17</sup> N east**
- 10. (a) Sketch the electric field lines near a point charge +q. (b) Do the same for a point charge -3.00q. (OpenStax 18.33) **see below**
- 11. Sketch the electric field lines a long distance from the charge distributions shown in Figure 18.26 (a) and (b) (OpenStax 18.34) **see below**
- 12. The figure shows the electric field lines near two charges  $q_1$  and  $q_2$ . What is the ratio of their magnitudes? (b) Sketch the electric field lines a long distance from the charges shown in the figure. (OpenStax 18.35) **-1.9:1, like a point charge**
- 13. Sketch the electric field lines in the vicinity of two opposite charges, where the negative charge is three times greater in magnitude than the positive. (See Figure 18.47 for a similar situation). (OpenStax 18.36)

